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Abstract
The spin dependence of cyclotron emission is treated using the non-relativistic
limit of the Dirac equation; the Schrödinger–Pauli theory is inadequate because
of the importance of spin–orbit coupling, which is an intrinsically relativistic
effect. Only the choice of the magnetic moment as the spin operator is
physically acceptable; all other spin operators precess at a rate comparable
with or in excess of cyclotron transition rates. The spin-flip (s = 1 → −1)
transition rate is smaller than the non-spin-flip of the order B/Bc (Bc = 4.4 ×
109 T), and the reverse spin-flip (s = −1 → +1) transition rate is smaller by
a further factor of order (B/Bc)2, implying that it is strongly forbidden. It is
shown that there is a preference for electrons with spin s = 1 initially in a high
Landau level, n � 1, to relax to the ground state, s = −1, n = 0, by stepwise
jumps to the lowest Landau level for s = 1 and then making the spin-flip
transition to s = −1, rather than making the spin-flip transition from a higher
Landau level, and that this preference increases with decreasing B/Bc.

PACS number: 41.60.−m

1. Introduction

A fully relativistic quantum theory for gyromagnetic emission has been available since the
1960s, and it has been used to discuss synchrotron radiation in detail by Sokolov and Ternov
(1968, 1986). These authors showed that synchrotron radiation tends to polarize electrons:
spin flips s = 1 → −1 are more probable than reverse spin flips s = −1 → 1 and tend
to cause the highly relativistic electrons to become 96% polarized in the state s = −1.
However, this applies only if the spin operator with eigenvalues labelled s = ±1 is identified
as the component of the magnetic moment operator along the magnetic field, B, which
Sokolov and Ternov referred to as transverse polarization. In contrast, if the spin operator
is identified as the component of the helicity operator along the magnetic field, referred to
as longitudinal polarization by Sokolov and Ternov, there is no tendency for the electrons to
become polarized as a result of synchrotron emission. These results apply in the synchrotron
limit where the perpendicular momentum is highly relativistic. The perpendicular momentum
is quantized, pn = (2ne B)1/2 = m(2nB/Bc)1/2, where n � 0 is the Landau quantum number and
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136 D B Melrose and K Russell

Bc = m2/e = 4.4 × 109 T is the critical magnetic field. (Natural units, with h̄ = c = 1 are
used in this paper.) The synchrotron regime corresponds to n � (2B/Bc)−1. In this paper we
refer to the opposite limit, n � (2B/Bc)−1, as the cyclotron regime.

A non-relativistic quantum theory for cyclotron emission is based on the Schrödinger–
Pauli theory, which implies that the cyclotron motion is quantized as a simple harmonic
oscillator,

(
l + 1

2

)
	e with l = 0, 1, . . . the orbital quantum number, with the inclusion of the

spin, 1
2 s	e, leading to a perpendicular energy p2

n/2m = n	e, with n = l + 1
2 (1 + s) as the

Landau quantum number. Cyclotron emission by non-relativistic electrons in a field B � Bc

occurs at close to harmonics of the cyclotron frequency: a transition from n → n′ produces a
photon with a frequency close to j	e, j = n−n′. An expansion in B/Bc implies that to lowest
order only non-spin-flip transitions at the fundamental j = 1 occur; non-spin-flip transitions
with j � 2 occur with a transition rate smaller by a factor of order (B/Bc)j−1 than for j = 1.
A spin-flip transition has a transition rate smaller than that for the corresponding non-spin-flip
transition by a factor of order B/Bc (Melrose and Zheleznyakov 1981). The generalization to
relativistic quantum theory has been discussed in detail (Pavlov et al 1980, Bezchastnov and
Pavlov 1988) only in the case where the spin is neglected by averaging over the spin states.

In this paper we concentrate on one aspect of cyclotron emission that has not been treated
adequately in the available literature: spin-flip transitions. One point that we emphasize is
that the concept of a spin-flip transition is well defined only if the appropriate spin operator
is chosen. The appropriate choice is to identify the spin as the magnetic moment operator,
specifically, the component, µ̂z, of the magnetic moment operator along B. Sokolov and Ternov
(1968, 1986) argued for this based on the requirements that the spin operator commutes not
only with the Dirac Hamiltonian, but also with the radiative correction to it; Herold et al
(1982) argued that this choice of spin operator diagonalizes the operator corresponding to
gyromagnetic emission. Apart from the ground state, n = 0, l = 0, s = −1, the electron states
are doubly degenerate, and different choices of spin correspond to different mixtures of l, s in
the two degenerate energy eigenstates for given n. This makes the concept of a ‘non-spin-flip’
or a ‘spin-flip’ transition dependent on the choice of spin operator. In order to treat spin-flip
transitions correctly, one needs to use the non-relativistic approximation to Dirac theory, rather
than the Schrödinger–Pauli theory; spin–orbit coupling, which is an intrinsically relativistic
effect, cannot be neglected in the non-relativistic limit when considering spin-dependent
effects. We illustrate this point by making a different choice of spin operator (the helicity)
and showing that ‘spin-flip’ transitions in this case must be interpreted differently. A second
point that we make, for the first time, is that with the appropriate choice of spin operator, the
transition rate for reverse spin-flip transitions, s = −1 → 1, is negligible compared with the
rate for direct spin flips, s = 1 → −1. Specifically, we show that the rate for reverse spin-flip
transitions is smaller by a factor of order (B/Bc)3 than that for the non-spin-flip transition. A
third point that we discuss is a possible counterpart for cyclotron emission of Sokolov and
Ternov’s result that electrons become highly polarized as a result of synchrotron emission.
Specifically, we consider the question as to how electrons initially at high l with s = 1 relax
to the ground state, l = 0, s = −1 (n = 0): is the spin-flip s = 1 → −1 made preferentially at
l> 0, or do the electrons preferentially relax to l = 0, s = 1 (n = 1) before the spin-flip?

In section 2 we present the exact theory for gyromagnetic emission, and emphasize the
importance of the correct (for this purpose) choice of spin operator. In section 3 we use the
non-relativistic limit of the general theory to treat cyclotron emission, calculating the transition
rates between eigenstates of µ̂z for both non-spin-flip and spin-flip transitions, and showing
that reverse spin-flip transitions are of much higher order in B/Bc. In section 4 we repeat the
calculation for the helicity eigenstates and show that ‘spin flips’ in this case are of the same
order (in B/Bc) as non-spin-flip transitions between the eigenstates of µ̂z. In section 5 we
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discuss whether spin flips occur preferentially at l > 0 or at l = 0. Our results are discussed
in section 6.

2. Quantum theory of gyromagnetic emission

In this section we write down general expressions for gyromagnetic emission by an electron
assuming that the spin operator is chosen to be the component, µ̂z, of the magnetic moment
operator, µ̂.

2.1. Eigenstates of the magnetic moment operator

The explicit form for the wavefunction for a relativistic electron in a magnetic field depends on
the choice of spin operator, and also on the choices of the representation of the Dirac algebra
and the gauge for the vector potential, A, for the magnetic field. The wavefunction, which
is a column matrix with four components, can be written as the product of a square matrix,
which contains all the spacetime and gauge dependence, and a column matrix which contains
all the spin dependence (Ritus 1970, 1972, Parle 1987). The general form is written down in
appendix A.

The magnetic moment operator is (Sokolov and Ternov 1968)

µ̂ = mσ − iγ × (p̂ + eA) (1)

with the standard representation of the 4 × 4 matrices σ and γ adopted here. The eigenvalues
of the z-component of the operator (1) are sε0

n, s = ±1

ε0
n = (

m2 + p2
n

)1/2 = (
ε2
n − p2

z

)1/2
εn = (

m2 + p2
z + p2

n

)1/2
(2)

where εεn with ε=±1 are the eigenvalues of the Dirac Hamiltonian. In appendix A a factorized
form (A.2) of the wavefunction is used to separate the spacetime and gauge-dependent part,
Vε
g(x, n, εpz), from the spin-dependent part, ϕεs (n, εpz). The spin-dependent part satisfies the

eigenvalue equation (A.5) for the Hamiltonian for any choice of spin, with the solutions being
doubly degenerate for n > 0. Simultaneous eigenfunctions of the Dirac Hamiltonian and of
the magnetic moment are found by requiring that the spin-dependent part also be an eigenvalue
of the z-component of the operator (1). Specifically, the magnetic moment eigenstates satisfy
the eigenvalue equation


m 0 0 −ipn
0 −m −ipn 0
0 ipn m 0

ipn 0 0 −m






C1

C2

C3

C4


 = sε0

n



C1

C2

C3

C4


 (3)

whereC1, C2, C3, C4 denote the four components of ϕεs (n, εpz). Simultaneous eigenfunctions
of the Hamiltonian and µz are

ϕεs (n, εpz) = 1(
2ε0

n2εnV
)1/2




λεsβs

−isPλ−εsβ−s
Pλ−εsβs
isλεsβ−s


 (4)

λ± = (
εn ± ε0

n

)1/2
βs = (

ε0
n + sm

)1/2

where the identities pz = λεsλ−εs, pn = βsβ−s are used with P = pz/|pz|, and where the
normalization is to one charge in the volume V . The phase of each eigenfunction is arbitrary,
and a specific choice (including the signs P, ε) is made to write (4) in a concise manner.
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2.2. General theory for gyromagnetic emission

The general theory for gyromagnetic emission may be developed in terms of the probability
per unit time that an electron in the state pz, n, s emits a photon with frequency ω and
(unimodular) polarization vector e, in the range d3k/(2π)3 at wavevector k, with transition
to the state p′

z, n
′, s ′ (Tsytovich 1972, Melrose and Parle 1983). For emission by an electron

(ε = ε ′ = 1) in vacuo, this probability is

wn,n′,s,s ′(k) = µ0e
2

2ω
|e∗ · Γn,n′,s,s ′(k)|22πδ(εn − ε′

n′ − ω) (5)

with conservation of parallel momentum implicit in p′
z = pz − kz and with εn =(

m2 + p2
z + 2neB

)1/2
and ε′

n′ = (
m2 + p′2

z + 2n′eB
)1/2

. The vertex function is defined in
appendix B. For the magnetic moment eigenstates (4) it is

Γn,n′,s,s ′(k) = b′∗
n′bn

(−s ′ [λ′
s ′λs − P ′Pλ′

−s ′λ−s
] [
β ′

−s ′βse
−iψJ n−1

n′−n+1 + s′sβ ′
s ′β−seiψJ nn′−n−1

]
,

− is′ [λ′
s ′λs − P ′Pλ′

−s ′λ−s
] [
β ′

−s ′βse
−iψJ n−1

n′−n+1 − s′sβ ′
s ′β−seiψJ nn′−n−1

]
,

P
[
λ′
s ′λ−s + P ′Pλ′

−s ′λs
] [
β ′
s ′βsJ

n−1
n′−n + s′sβ ′

−s ′β−sJ nn′−n
])

(6)

bn = (ieiψ)n(
2ε0

n2εn
)1/2 λs = (

εn + sε0
n

)1/2
βs = (

ε0
n + sm

)1/2

with P = pz/|pz|, and similarly for the primed quantities. In (6) the wave vector is written
k = (k⊥ cosψ, k⊥ sinψ, kz), and one is free to choose ψ = 0 by rotating the axes so that k is
in the x−z plane. The J-functions are related to generalized Laguerre polynomials

J nν (x) = (−)νJ n+ν
−ν (x) =

(
n!

(n + ν)!

)1/2

e−x/2xν/2 Lν
n(x) (7)

with argument x = k2
⊥/2eB. It is implicit that the function J nν (x) is identically zero for

negative n.

3. Quantum theory of cyclotron emission

In this section the non-relativistic approximation is made to the general theory of section 2,
and this is used to treat cyclotron emission between eigenstates of the magnetic moment
operator, µ̂z.

3.1. The cyclotron approximation

In treating cyclotron emission, the non-relativistic approximation is made in evaluating the
vertex function. An important simplification results for x = k2

⊥/2eB � 1, that is, when the
argument of the J-functions in the vertex function (6) is small. One has

x = k2
⊥

2eB
= k2 sin2 θ

2m	e

= 1

2

(
k⊥
m

)2 (
B

Bc

)−1

. (8)

For k2
⊥/2eB � 1 the power series expansions of the J-functions converge rapidly, and each

function may be approximated by its leading term (for j > 0):

J n−j (x) ≈ (−)j
j !

(
n!

(n− j)!

)1/2

xj/2. (9)

Hence, when making the cyclotron approximation, one need retain only the terms with the
smallest value of |ν| in J nν .
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3.2. Nonrelativistic approximation to the vertex function

Here the foregoing approximations are applied to the vertex function (6). This involves
assuming that pz/m, pn/m are small and their powers are expanding. The momentum, kz, of
the wave quantum is assumed to be of the same order as the momentum of the particle, so that
k⊥/m, kz/m and p′

z/m are of the same order as pz/m. For the quantity pn/m = (2nB/Bc)1/2

to be small for modest values of n, one also needs to make the weak-field approximation
B � Bc.

With the foregoing approximations, the quantities defined in equation (6) reduce to

λ′
+ ≈ λ+ ≈ β ′

+ ≈ β+ ≈ (2m)1/2 λ′
− ≈ |p′

z|
(2m)1/2

λ− ≈ |pz|
(2m)1/2

β ′
− ≈ pn′

(2m)1/2
β− ≈ pn

(2m)1/2
. (10)

These approximations allow one to order the coefficients of the J-functions in (6) in powers
of the small quantities.

For a transition that involves a jump of n− n′ = j , the leading terms in (6) are those with
lower index n′ − n + 1 = −(j − 1). These terms appear only in the one- and two-components
of Γ. For a non-spin-flip transition, s′ = s, these are the only terms that need to be retained.
However, for s = 1, s′ = −1, the coefficients of these terms are one order higher in the small
quantities, and the three-component of Γ cannot be neglected.

The relevant approximation to (6) is different for transitions involving no spin flip (s = s′),
those involving a spin flip (s = 1 → s′ = −1) and those involving a reverse spin flip
(s = −1 → s′ = 1). There are three factors in the evaluation of Γ (cf (6)) and each of these
needs to be evaluated for the four different combinations of spins for specified j = n−n′. The
first of these is the multiplicative factor b′∗

n′bn = (ieiψ)j/(2m)2, which is common to all cases.
The second factor involves the combination of λs, which are approximated using (10). The
signs P ′, P ensure that in the approximations to λ′

− and λ−, the modulus signs are removed
from p′

z and pz, respectively. There is a remaining overall sign that can involve P ′ or P, but
which is of no physical relevance and is ignored in the following. Then one finds (for j > 0)

λ′
s ′λs + λ′

−s ′λ−s ≈ 1
2 (1 + s′s)2m + 1

2 (1 − s ′s)(p′
z + pz)

λ′
s ′λs − λ′

−s ′λ−s ≈ s
[

1
2 (1 + s′s)2m + 1

2 (1 − s ′s)(p′
z − pz)

]
(11)

λ′
s ′λ−s + λ′

−s ′λs ≈ 1
2 (1 + s′s)(p′

z + pz) + 1
2 (1 − s ′s)2m.

The other factor involves the J-functions. Retaining only the lowest order terms in x1/2,

(B/2Bc)1/2 for each value of s, s′, one finds

β ′
s ′βsJ

n−1
n′−n + s′sβ ′

−s ′β−sJ nn′−n ≈ 2m
(−)j
j !

(
l!

(l − j)!

)1/2

xj/2

×



1 for s = s′

−j (B/2Bc)1/2/(l − j + 1)1/2 for s = −s′ = 1
O(B/Bc, x) for s = −s ′ = −1

β ′
−s ′βsJ

n−1
n′−n+1 ∓ s ′sβ ′

s ′β−sJ nn′−n−1 ≈ 2m
(−)j−1

(j − 1)!

(
l!

(l − j)!

)1/2

x(j−1)/2

×


(B/2Bc)1/2 for s = s′

1/(l − j + 1)1/2 for s = −s′ = 1
O(B/Bc, x) for s = −s′ = −1.

(12)
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for ψ = 0 and with l = n− 1
2 (1 + s). In the entries for the reverse spin flip (s = −1, s′ = 1)

in the first equation in (12) the leading terms cancel.
There is a contribution to the vertex function (6) for j = 0, which may be approximated

by

Γn,n,s,s ′(k) = 1
2 (1 + s′s) [(p′

z + pz)/2m] (0, 0, 1). (13)

However, transitions with j = 0 correspond to Cerenkov-like emission and not to gyromagnetic
emission. Hence, the term (13) is of no direct interest for gyromagnetic emission.

Collecting terms, the relevant approximations to the vertex function (6) for gyromagnetic
emission by a non-relativistic electron are

Γn,n−j,s,s ′(k) = (−i)j
[

1
2 (1 + ss′)

(
B

2Bc

)1/2 (
l!

(l − j)!

)1/2
x(j−1)/2

(j − 1)!
(1, i, 0)

+ 1
2 (1 + s) 1

2 (1 − s′)
(

l!

(l − j + 1)!

)1/2
x(j−1)/2

(j − 1)!

(kz, ikz,−k⊥)
2m

]
(14)

with (p′
z − pz)/m = −kz/m. The two terms inside the square brackets correspond to the

non-spin-flip and spin-flip transitions, respectively, and the reverse spin flip is neglected. For
a spin-flip transition, assuming kz is the same order as k⊥, Γ is of order x1/2 times that for a
non-spin-flip transition with the same j.

In the approximation (14) the non-spin-flip transitions correspond to 2 j-electric multipole
radiation with j = n− n′ = l − l′, so that j corresponds to the change in the orbital quantum
number. Specifically, the transition with s′ = s and j = l − l′ = 1 corresponds to electric
dipole radiation, the transition with s′ = s and j = l−l′ = 2 corresponds to electric quadrupole
radiation, and so on. The direct spin-flip transition s = 1, s′ = −1 for j = n−n′ = 1 involves
no change in the orbital quantum number, l′ = l, and this corresponds to magnetic dipole
radiation.

Repeating the calculation for a positron rather than an electron, the result is equivalent
to using the complex conjugate of the vertex function (14). This implies that emission by
a positron differs from that due to an electron only in that the circular polarization of the
emission has the opposite handedness.

3.3. Probability for cyclotron emission

The probability (5) for gyromagnetic emission in general reduces to the probability
for cyclotron emission when the non-relativistic approximation is made, including the
approximation (14) to the vertex function. It is convenient to choose two orthogonal elliptical
polarizations, with axial ratios T and −1/T; complete information on the polarization is then
contained in a single probability with an arbitrary T. This involves choosing the polarization
vector to be

e = T t + ia

(1 + T 2)1/2
(15)

where the direction of wave propagation, κ = (sin θ cosψ, sin θ sinψ, cos θ), and t =
(cos θ cosψ, cos θ sinψ,−sin θ), a = (−sinψ, cosψ, 0) form an orthonormal triad. The
probability for a non-spin-flip transition, n → n′ = n− j with s′ = s, is

wn,n−j,s,s(k) = µ0e
2(1 + T cos θ)2

2ω(1 + T 2)

l! sin2(j−1) θ

2j (l − j)![(j − 1)!]2

×
(
B

Bc

)2−j (ω
m

)2(j−1)
2πδ(εn − ε′

n−j − ω) (16)
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where the weak dispersion approximation
(
ω2 = k2

⊥ + k2
z

)
is made, and the non-relativistic

approximation is not made to the δ-function. The probability for a transition n → n′ = n− j

with a spin flip, s = 1 → s′ = −1, is

wn,n−j,+,−(k) = µ0e
2(cos θ + T )2

2ω(1 + T 2)

l! sin2(j−1) θ

2j+1(l − j + 1)![(j − 1)!]2

×
(
B

Bc

)1−j (ω
m

)2j
2πδ(εn − ε′

n−j − ω). (17)

The probabilities corresponding to (16), (17) for a positron may be obtained by replacing the
polarization vector by its complex conjugate, which is equivalent to T → −T in (16) and (17).

3.4. Non-spin-flip transitions

The rate of transitions per unit time is found by integrating the probability over d3k/(2π)3,
and summing over the two orthogonal polarizations if one has no interest in the polarization
of the emission. The non-spin-flip (s′ = s) transition rate for cyclotron emission in vacuo is
given by

Rn,n′,s,s = µ0e
2

2

∫
d3k

(2π)3

|κ × -n,n′,s,s(k)|2
ω

2πδ(εn − ε′
n′ − ω). (18)

The rates for emission of photons polarized perpendicular (T = 0) and parallel (T = ∞) may
be evaluated separately: their sum gives the total rate Rn,n′ , and their difference divided by
their sum, denoted rn,n′ , gives information on the degree of linear polarization of the emitted
photons.

For non-spin-flip transitions,Rnsf
l,l−j = Rn,n−j,s,s , with n = l + 1

2 (1 + s), the rate reduces to

Rnsf
l,l−j = αm

l!

(l − j)!

2j+1(j + 1)!

(j − 1)!(2j + 1)!

(ω
m

)2j−1
(
B

Bc

)2−j
(19)

with ω = εn − εn−j . To lowest order in B/Bc, ω = j	e = jm(B/Bc) is the jth harmonic
of the cyclotron frequency, and then (19) implies Rnsf

l,l−j ∝ (B/Bc)
j+1. The polarization for

emission at a given angle θ is right-hand elliptical with major axis along a and axial ratio
T = 1/|cos θ |. The rate of emission can be evaluated separately for the orthogonal linear
polarizations. The integrated degree of linear polarization

rnsf
l,l−j = j

j + 1
(20)

implies a preference for emission of a photon polarized along a rather than t.

3.5. Spin-flip transitions

For spin-flip transitions, Rsf
l,l−j = Rn,n−j,+,−, with l = n − 1, l′ = n′ = n − j = l − j + 1,

one finds

Rsf
l,l−j = αm

(ω
m

)2j+1
(
B

Bc

)−j+1
l!

(l − j + 1)!

2j j (j + 1)

(2j + 1)!
. (21)

The approximation ω = jm(B/Bc) in (28) implies Rsf
l,l−j ∝ (B/Bc)

j+2, one power in B/Bc

higher than for the non-spin-flip transition (19). The polarization for emission at a given angle
is right-hand elliptical with major axis along t with axial ratio T = 1/|cos θ |. The counterpart
of (20)

rsf
l,l−j = − j

j + 1
(22)

implies a preference for emission of a photon polarized along t rather than a.
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3.6. Reverse spin-flip transitions

For reverse spin-flip transitions, s = −1 → s′ = 1, the leading terms in the non-relativistic
approximation to the vertex function cancel. It is convenient to use the exact expressions
for the J-functions, and to simplify the result using recursion relations that they satisfy. The
recursion relation used is

l1/2J l−1
−j (x)− (l − j)1/2J l−j (x) = −x1/2J l−j−1(x). (23)

Collecting terms, the vertex function for a reverse spin flip, Γrsf
l,l−j (k) = Γn,n−j,−1,1(k) with l

= n, reduces to

Γrsf
l,l−j (k) = (−i)j

[
J l−j−1(x)

(kz,−ikz,−k⊥)
2m

− kz

2m

B

2Bc
[l(l − j)]1/2J l−1

−j+1(x)(1, i, 0)

]
.

(24)

Then comparing (24) and (14) and making the approximation (9) to the J-functions with
x, kz/m and k⊥/m all of order B/Bc, one finds that Γ for a reverse spin-flip transition is of
order (B/Bc)3/2 smaller than that for a non-spin-flip transition, and of order B/Bc smaller than
that a spin-flip transition with the same j. The rate of transition, being proportional to |-|2, is
smaller for a reverse spin-flip transition of the order (B/Bc)3 than for a non-spin-flip transition,
and of the order (B/Bc)2 than for a spin-flip transition with the same j. Thus, a reverse spin-flip
transition at the fundamental, j = 1, is of the same order as a non-spin-flip transition with
j = 4 or of a spin-flip transition with j = 3. In the context of cyclotron emission theory,
reverse spin-flip transitions are negligible whenever emission higher than the third harmonic
is negligible.

4. Transitions between helicity eigenstates

The choice of the spin operator as the magnetic moment operator is the only acceptable one
when discussing spin flips (Sokolov and Ternov 1968, 1986, Herold et al 1982). To emphasize
this point, in this section we discuss the implications of choosing an alternative spin operator,
specifically the helicity.

4.1. Transitions between helicity eigenstates

The helicity operator is written down in appendix C. Its eigenvalues are written as σPhn, with
σ = ±1, P = pz/|pz|, hn = (

p2
n + p2

z

)1/2
. The sign P is needed so that the ground state

corresponds to σ = −1. One might identify a spin flip as σ → −σ in this case. However, for
the helicity states there are two complications in defining what is meant by a spin flip.

One complication is related to the interpretation of the case P ′P = −1. As shown in
appendix C, choosing the ground state to be σ = −1 requires the appearance of the sign P
in the eigenvalue and the eigenfunctions. Suppose an electron with pz > 0 emits a photon
with kz > pz to give p′

z = pz − kz < 0. The helicity then changes sign due to the change in
sign of the momentum, and this is not what one conventionally thinks of as a spin flip. This
complication is ignored in the following discussion by assuming P ′P = 1.

The other complication has wider implications: the radiative correction that leads to the
familiar correction

(
1
2

)
(g − 2) = α/2π to the g-factor in the anomalous magnetic moment of

the electron (Schwinger 1949) causes all spin operators other than the magnetic moment to
precess at a frequency 	eα/2π,	e = eB/m (Sokolov and Ternov 1968, 1986, Parle 1987).
The precession causes the expectation value of the helicity operator to vary periodically at
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this frequency, and such changes could be misinterpreted as a spin flip. In fact, the helicity
eigenstates are well defined only on times much shorter than the precession period, and it
is meaningful to discuss radiative transitions between eigenstates only on such short times.
The concept of a spin flip is meaningful only if the rate of spin-flip transitions exceeds the
precession rate. Consider two alternative criteria: that the slowest of the non-spin-flip transi-
tion rates, n = 1 → n′ = 0, exceeds the precession rate, and that the spin-flip transition rate
exceeds the precession rate. These reduce to

Rnsf
1,0

	eα/2π
= 8π

3

B

Bc
> 1

Rsf
l,l−1

	eα/2π
= 4π

3

(
B

Bc

)2

> 1 (25)

where (19) with l = 1, j = 1, ω = 	e and (28) with j = 1, ω = 	e are used,
respectively. The former of these is not consistent with the condition 2B/Bc � 1 required
for the non-relativistic approximation to apply, and the latter fails to satisfy this criterion
even more strongly. We conclude that it is inconsistent to discuss spin-flip transitions due to
cyclotron emission for any spin operator apart for the magnetic moment operator.

4.2. Transition rates

Nevertheless, for the purpose of discussion, we calculate the transition rates due to cyclotron
emission in vacuo for the four possible helicity transitions, σ = σ ′ = 1, σ = σ ′ =
−1, σ = −σ ′ = 1, σ = −σ ′ = −1. The calculation, outlined in appendix C, gives(
with n = l + 1

2 (1 + σ) for the helicity states
)

Rhel
n,n−j,+,+ = Ān,n−j (hn + h′

n′)
2 cos2

(
1
2αn

)
sin2

(
1
2α

′
n′
)

Rhel
n,n−j,−,− = Ān,n−j (hn + h′

n′)
2 sin2 (

1
2αn

)
cos2 (

1
2α

′
n′
)

Rhel
n,n−j,+,− = Ān,n−j (hn − h′

n′)
2 cos2

(
1
2αn

)
cos2

(
1
2α

′
n′
)

(26)

Rhel
n,n−j,−,+ = Ān,n−j (hn − h′

n′)
2 sin2

(
1
2αn

)
sin2

(
1
2α

′
n′
)

with hn = (
p2
n + p2

z

)1/2
, h′

n′ = (
p2
n′ + p′2

z

)1/2
, and with

Ān,n−j = αm

2eB

(n− 1)!

(n− j)!

2j+1(j + 1)!

(j − 1)!(2j + 1)!

(ω
m

)2j−1
(
B

Bc

)2−j
(27)

where the angles αn, α′
n′ are defined by analogy with the classical pitch angle, by writing

pn = hn sin αn, pz = hn cosαn, pn′ = h′
n′ sin α′

n′ , andp′
z = h′

n′ cosα′
n′ .

The transition rates for the helicity and magnetic moment states can be compared by
averaging over the initial spins and summing over the final spins. For the helicity states (26),
(27) imply∑
σ,σ ′

Rhel
n,n−j,σ,σ ′ = Ān,n−j

[
p2
n + p2

n′ + (pz − p′
z)

2
] ≈ Ān,n−j (2n− j)(2eB). (28)

In the final step the term (pz −p′
z)

2 = k2
z ≈ (jeB/m)2 cos2 θ is neglected in comparison with

p2
n + p2

n′ = (2n− j)(2eB) due to it being one order higher in B/Bc. Performing the sum over
the rate of non-spin-flip transitions for the magnetic moment states, that is over (19) for l = n
and for l = n −1, one obtains the same result as (28) to lowest order in B/Bc. It follows that all
the rates (26) are of the same order as the non-spin-flip transitions for the magnetic moment
states.

An interpretation of the foregoing result involves regarding the helicity states as mixtures
of the magnetic moment states. The coefficients relating the two are cos

(
1
2αn

)
, sin

(
1
2αn

)
.

A change n → n′ implies a change in the coefficients cos
(

1
2αn

)
, sin

(
1
2αn

) → cos
(

1
2α

′
n′
)
,
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sin
(

1
2α

′
n′
)
. Suppose the initial state is pure σ = 1. This corresponds to a mixture of the s = 1,

−1 states with coefficients cos
(

1
2αn

)
, sin

(
1
2αn

)
. A non-spin-flip transition (preserving s) does

not change this mixture. However, for the new n′ this mixture does not correspond to the pure
state σ ′ = 1 because the coefficients are not the required cos

(
1
2α

′
n′
)
, sin

(
1
2α

′
n′
)
. Thus s′ = s

implies σ ′ �= σ and vice versa. The definition of a spin-flip transition is dependent on the
choice of spin operator, and the magnetic moment is the appropriate choice when discussing
gyromagnetic emission.

5. Effect of spin-flip transitions

In this section we discuss the effect of spin flips in cyclotron emission on the steady-state
distribution of electrons in the Landau levels when there is a constant source of electrons at
high levels. The question addressed is whether electrons with s = 1 preferentially reach the
true ground state, l = 0, s = −1, (a) by a spin-flip transition at l > 0, or (b) by relaxing to the
ground state, l = 0, s = 1, for s = 1 before making the spin-flip transition.

5.1. Kinetic equations

Let Ns
n denote the occupation number of the state n, s integrated over the parallel momentum,

pz. The evolution of these occupation numbers due to cyclotron emission is described by the
kinetic equations

dN+
n

dt
=

∑
j=1

[Rn+j,n,+,+N
+
n+j − (Rn,n−j,+,+ + Rn,n−j,+,−)N+

n ]

(29)
dN−

n

dt
=

∑
j=1

[Rn+j,n,−,−N−
n+j − (Rn,n−j,−,−)N−

n + Rn+j,n,+,−N+
n+j ]

with the transition rates given by (19) and (28).
To lowest order in B/Bc only the non-spin-flip transitions with j = 1 are retained in (29).

In this case the only rate retained in (29) is

Rl,l−1,s,s = lR0 R0 = 4αm

3

(
B

Bc

)2

. (30)

The steady-state solution of (29) is independent of s, and it is convenient to write Ns
n = Nl .

Assuming an injection at a rate ṄL at some level l = L, the solution is

Nl = ṄL

lR0
. (31)

The number in the lowest state, l = 0, for each spin increases at the rate ṄL that the electrons
are injected at l = L.

5.2. Inclusion of spin flips

The inclusion of spin flips allows electrons to jump from the states l, s = 1 to l, s = −1 at the
rate

Rsf = R0
B

2Bc
. (32)

All electrons end up in the ground state with l = 0, s = −1. There is no change in the solution
(31) on electrons initially with s = −1. The question of interest concerns electrons initially
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with s = 1: do the electrons tend to make the jump s = 1 → −1 in an excited state l > 0, or
do they tend to collect in the state l = 0, s = 1 before making the spin-flip transition? The
rate of spin-flip transitions at a given l is independent of l according to (32), and hence it is
proportional to N+

l+1. In a perturbation approach, the effect of the spin-flip transitions on the
solution for s = 1 is neglected, so that for l > 0 (31) implies N+

l+1 = ṄL/lR0. The lowest
energy state, l = 0, reaches a steady state with

N+
1 = ṄL

Rsf
= ṄL

R0

(
B

2Bc

)−1

(33)

where (32) is used. It follows that the rate of transitions s = 1 → −1 is

dN+
l+1

dt
=



ṄL

l

B

2Bc
for l > 0

ṄL for l = 0.
(34)

One concludes that there is a preference for the electrons to relax to the state l = 0, s = 1
before making the spin-flip transition, but that the rate of spin-flip transitions at higher l is not
necessarily negligible. For example, suppose one has B/2Bc = 0.1, so that the non-relativistic
approximation is valid only for l � 1/(B/2Bc) = 10. Assuming L = 1/(B/2Bc) = 10, the sum
of the rates (34) for 0< l � L is about 30% of the rate for l = 0. This branching ratio decreases
with decreasing B/2Bc for L = 1/(B/2Bc), implying that the preference for relaxation to
l = 0, s = 1 before the spin-flip transition increases with decreasing B. With L ∼ 1/(B/Bc)
the branching ratio of spin-flip transitions at l > 0 compared with those at l = 0 decreases
∼(ln L)/L for B/Bc → 0.

6. Discussion and conclusions

The main point emphasized in this paper is that a correct treatment of spin dependence in
the quantum theory of cyclotron emission requires (a) the use of the non-relativistic limit
of Dirac theory (rather than use of the Schrödinger–Pauli theory) and (b) the choice of the
magnetic moment as the spin operator. The use of intrinsically relativistic theory to treat a
seemingly non-relativistic problem is due to spin–orbit coupling being important even in the
non-relativistic limit, and spin–orbit coupling is an intrinsically relativistic effect.

The magnetic-moment operator is the only acceptable choice of spin operator when
treating gyromagnetic emission. An acceptable spin operator must commute with the (Dirac)
Hamiltonian, and all other operators that satisfy this requirement precess at a rate (α/2π)	e

due to the radiative correction to the magnetic moment (Schwinger 1949, Sokolov and Ternov
1968, 1986, Parle 1987). According to (25), the transition rates for cyclotron emission
are typically less than the precession rate, implying that a spin-flip transition for other spin
operators cannot be defined meaningfully. Nevertheless, for illustrative purposes, cyclotron
emission is treated for the helicity states, σ = ±, and it is argued in section 4 that transitions
in which σ changes sign should not be interpreted as a true spin flip.

In section 3 we show that the transition rate for a reverse spin-flip is of order (B/Bc)3

higher than that for a non-spin-flip transition, and of order (B/Bc)2 higher than that for a direct
spin-flip transition. This implies that reverse spin-flips due to cyclotron emission are effectively
forbidden. In an earlier treatment (Melrose and Zheleznyakov 1981) the Johnson–Lippmann
(Johnson and Lippmann 1949) states were chosen, and this precludes a correct treatment of
a reverse spin flip. The Johnson–Lippmann wavefunctions reduce to the magnetic moment
eigenstates for an electron, but not for a positron, in a non-relativistic approximation, but
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higher order terms need to be retained to treat the reverse spin flip correctly. The correct rate
for reverse spin-flip transitions requires that one choose the correct spin eigenstates.

Sokolov and Ternov (1968, 1986) showed that as a result of synchrotron emission,
electrons tend to become 96% polarized in the state s = −1, and we discuss the possible
counterpart of this result for cyclotron emission. The absence of reverse spin flips implies
that the only spin change that can result from cyclotron emission is s = 1 → −1. For an
electron in an excited state l = L ∼ (B/2Bc)−1 with s = 1, the results of section 5 imply that
there is a preference for the electron to jump sequentially (l → l − 1) down to the state
l = 0, s = 1 before making the spin-flip transition to the ground state l = 0, s =
−1. Thus, as in the synchrotron case, cyclotron emission favours electrons collecting
in the state s = −1. For weak fields, B � Bc, the relative probability of the spin flip
occurring from an excited state, l > 0, rather than for l = 0, approaches zero for B → 0 as
(lnL)/L, L ∼ (B/2Bc)−1.

We conclude with a few remarks on applications of the results derived here. The quantum
theory of cyclotron emission is needed to complement the long-established quantum theory of
synchrotron emission, which was motivated by laboratory applications (Sokolov and Ternov
1968). As a result of synchrotron emission an electron loses its perpendicular energy, and
enters the cyclotron regime when the perpendicular energy becomes non-relativistic. In
this sense a discussion of the cyclotron regime is a necessary addition to the synchrotron
regime. The results derived here are also needed to discuss spin-dependent effects in cyclotron
absorption and on wave dispersion in dense, strongly-magnetized electron gases. Absorption
may be related to emission by appealing to detailed balance using the probability (5). Also,
a treatment of dispersion involves the same approximations to the vertex functions as derived
here. A particular application of interest to us is of pulsars, which are neutron stars with
superstrong magnetic fields. The vast bulk of ‘ordinary’ pulsars have surface field B/Bc ∼
0.1, with ‘millisecond pulsars’ and ‘magnetars’ having much weaker and stronger fields,
respectively (e.g., Taylor et al 1993, Thompson and Duncan 1996). A pulsar magnetosphere
is populated by electron–positron pairs produced through one-photon pair creation. Recently
it has been shown (Weise and Melrose 2001) that for B/Bc � 0.1 the resulting pairs are
in low Landau levels n � (2B/Bc)−1, confirming earlier suggestions that this might be the
case (Daugherty and Harding 1983). As a consequence, the gyromagnetic emission by these
particles is in the cyclotron regime, rather than the synchrotron regime as has usually been
assumed (e.g., Daugherty and Harding 1996). These various applications will be discussed
elsewhere.
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Appendix A. Wavefunctions

Dirac’s equation for an electron in a magnetic field has energy eigenvalues εεn, with
ε = ±1, εn = (

m2 + p2
z + p2

n

)1/2
, pn = (2neB)1/2. It is convenient to write the wavefunction

in the form

4ε
q(t,x) = e−iεεnt4ε

q(x) (A.1)
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where q denotes the eigenvalues, which include n, pz, a gauge-dependent quantum number, g,
and the spin quantum number, s = ±1. One is free to choose a wavefunction of the factorized
form (Ritus 1970, 1972, Parle 1987)

4ε
q(x) = Vε

g (x, n, εpz)ϕ
ε
s (n, εpz)e

ipzz ϕεs (n, εpz) =



C1

C2

C3

C4


 (A.2)

where Vε
g(x, n, εpz) is a square matrix. In the Landau gauge, A = (0, Bx, 0), y is ignorable,

and with the wavefunction chosen to be proportional to exp(iεpyy), the identification g → py
is made in (A.2). In the standard representation of the Dirac algebra, one then has

Vε
g(x, n, εpz) = eiεpyy



vn−1(ξ) 0 0 0

0 vn(ξ) 0 0
0 0 vn−1(ξ) 0
0 0 0 vn(ξ)


 (A.3)

which involves the simple harmonic oscillator wavefunctions

vn(ξ) = 1

(
√
π2nn!)1/2

Hn(ξ)e−ξ 2/2 ξ = (eB)1/2
(
x +

εpy

eB

)
(A.4)

where Hn is a Hermite polynomial.
The C1, . . . , C4 are eigenfunctions of the Hamiltonian, which implies


m 0 εpz −ipn
0 m ipn −εpz
εpz −ipn −m 0
ipn −εpz 0 −m






C1

C2

C3

C4


 = εεn



C1

C2

C3

C4


 . (A.5)

The solutions of (A.5) are doubly degenerate,corresponding to the positive and negative energy
eigenvalues εεn, and one requires that the C1, . . . , C4 also be simultaneous eigenvalues of a
spin operator in order to find the solutions (4).

Appendix B. The vertex function

The vertex function is defined by[
γ ε

′ε
q ′q (k)

]µ
=

∫
d3x e−ik·x4̄ε′

q ′(x)γ µ4ε
q (x) (A.6)

where γ µ,µ = 0, . . . , 3 are the Dirac matrices, and the overline denotes the Dirac adjoint.
The wavevector is written in the form k = (k⊥ cosψ, k⊥ sinψ, kz). The vertex function (A.6)
factorizes: [

γ ε
′ε

q ′q (k)
]µ

= dε
′ε
q ′q(k)

[
-ε

′ε
q ′q(k)

]µ
(A.7)

with dε
′ε
q ′q(k) containing all the gauge-dependent parts. For the Landau gauge one has

dε
′ε
q ′q(k) = eikx (εpy+ε′p′

y)/2eB

V (eB)1/2
2πδ(εpy − ε ′p′

y − ky)2πδ(εpz − ε ′p′
z − kz) (A.8)

where conservation of the y-component of momentum, ε′p′
y = εpy − ky, is used implicitly in

the factor e−iψ = [kx − i(εpy − ε ′p′
y)]/k⊥. This part of the vertex function does not appear

explicitly in the theory of gyromagnetic emission, or for any process that does not depend on
the position of the gyrocentre of the electron.
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We refer to the quantity Γ as the vertex function; it is the space part of the 4-vector
introduced in (A.7), and is given by[

-ε
′ε
q ′q(k)

]µ = V ϕ̄ε
′
s ′ (n

′, ε ′p′
z)G

µ(n′, n,k) ϕεs (n, εpz). (A.9)

with the ||-components (µ = 0, z) and ⊥-components (µ = x, y) given by

G
µ

‖ (n
′, n,k) = γ

µ

‖ J‖(n′, n,k) G
µ

⊥(n
′, n,k) = γ

µ

⊥J⊥(n′, n,k) (A.10)

J‖ = (−i e−iψ)n
′−n



J n−1
n′−n 0 0 0
0 J nn′−n 0 0
0 0 J n−1

n′−n 0
0 0 0 J nn′−n


 (A.11)

J⊥ = (−i e−iψ)n
′−n




−i e−iψJ n−1
n′−n+1 0 0 0

0 i eiψJ nn′−n−1 0 0
0 0 −i e−iψJ n−1

n′−n+1 0
0 0 0 i eiψJ nn′−n−1


 (A.12)

with the J-functions defined by (7) with argument k2
⊥/2eB. The form (A.9) gives the explicit

forms (6) and (A.15) for the magnetic-moment and helicity eigenstates, respectively.

Appendix C. Helicity states

The helicity operator in the Dirac theory in the presence of a magnetic field with vector
potential A is

h = σ · (p̂ + eA) (A.13)

with the same notation as equation (1). The eigenvalues are σPhn, with P = pz/|pz| and
hn = (

p2
n + p2

z

)1/2
.

Simultaneous eigenstates of the helicity operator and the Hamiltonian in the standard
representation of the Dirac algebra may be written in the same form as for the magnetic
moment states. Equation (A.5) is replaced by


εpz −ipn 0 0
ipn −εpz 0 0
0 0 εpz −ipn
0 0 ipn −εpz






C1

C2

C3

C4


 = σεPhn



C1

C2

C3

C4


 . (A.14)

The simultaneous eigenfunctions are

ϕεσ (n, εpz) = 1

(2hn2εnV )1/2




< + gσ

iσεP < + g−σ
σP < − gσ

iε < − g−σ




<± = (εn ± εm)1/2 gσ = (hn + σ |pz|)1/2. (A.15)

The appearance of the sign P is required so that the ground state (n = 0, h0 = |pz|) corresponds
to σ = −1. For these helicity eigenstates, the vertex function is

-µ = a′∗
n′an

(
[<′

+<+ + S<′
−<−]

[
g′
σ ′gσJ

n−1
n′−n + ε ′εSg′

−σ ′g−σ J nn′−n
]
,

− ε ′S[<′
+<− + S<′

−<+]
[
g′

−σ ′gσ e−iψJ n−1
n′−n+1 + ε ′εSg′

σ ′g−σ eiψJ nn′−n−1

]
,
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− iε ′S[<′
+<− + S<′

−<+]
[
g′

−σ ′gσ e−iψJ n−1
n′−n+1 − ε ′εSg′

σ ′g−σ eiψJ nn′−n−1

]
,

σP [<′
+<− + S<′

−<+]
[
g′
σ ′gσJ

n−1
n′−n − ε ′εSg′

−σ ′g−σ J nn′−n
])

an = (ieiψ)n

(2hn2εn)1/2
<± = (εn ± εm)1/2 S = P ′Pσ ′σ (A.16)

with a′
n′ , <′

±, g′
σ ′ defined in an analogous way in terms of primed quantities. The non-

relativistic approximation to (A.16) involves making the approximation (9) to the J-functions,
together with the following approximations, for an electron ε = ε′ = 1:

<+ ≈ (2m)1/2 <− ≈ hn

(2m)1/2
<′

+ ≈ (2m)1/2 <′
− ≈ h′

n′

(2m)1/2
. (A.17)

One can set PP ′ = 1 except for kz > pz > 0 or kz < pz < 0, which need to be treated
separately due to a ‘spin flip’ then arising from a purely kinematic change, as discussed in
section 4. Assuming this special case can be treated separately, one can set PP ′ = 1. For
PP ′ = 1, the non-relativistic approximation gives

<′
+<− + <′

−<+ = hn + h′
n′ <′

−<+ −<′
+<− = h′

n′ − hn. (A.18)

It can be helpful to introduce the quantum counterpart, α, of the pitch angle by writing

pn = hn sin αn pz = hn cosαn (A.19)

and similarly pn′ = h′
n′ sinα′

n′ and p′
z = h′

n′ cosα′
n′ . Then for pz > 0 and PP ′ = 1 one has

g+ = (2hn)1/2 cos
(

1
2αn

)
g− = (2hn)1/2 sin

(
1
2αn

)
(A.20)

and similarly g′
+ = (2h′

n′)1/2 cos
(

1
2α

′
n′
)

g′− = (2h′
n′)1/2 sin

(
1
2α

′
n′
)
.

The lowest order terms in the expansion of the J-functions give, for σ = σ ′ = 1, σ =
σ ′ = −1, σ = −σ ′ = 1 and σ = −σ ′ = −1, and for ψ = 0 and n = l + 1

2 (1 + σ)

Γn,n−j,+,+ = − ij (hn + h′
n′)

2m
cos

(
1
2αn

)
sin

(
1
2α

′
n′
)
J l−(j−1)(1, i, 0)

Γn,n−j,−,− = − ij (hn + h′
n′)

2m
sin

(
1
2αn

)
cos

(
1
2α

′
n′
)
J l−1

−(j−1)(1, i, 0)

Γn,n−j,+,− = ij (hn − h′
n′)

2m
cos

(
1
2αn

)
cos

(
1
2α

′
n′
)
J l−(j−1)(1, i, 0)

Γn,n−j,−,+ = ij (hn − h′
n′)

2m
sin

(
1
2αn

)
sin

(
1
2α

′
n′
)
J l−1

−(j−1)(1, i, 0) (A.21)

respectively.
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